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Abstract 

Cauer Ladder Network (CLN) method is more and more 
used for order reduction of large numerical 
magnetoquasistatic model. It appears during the process 
of construction of the reduced model, loss of 
orthogonality of the vectors of the reduced bases which 
can lead to increase the error of reduction. To overcome 
this issue, a modified Gram-Schmidt process is 
introduced. The modified process of CLN construction is 
evaluated on a 3D magnetoquasistatic example in the 
frequency domain.  

 

1 Introduction 

Model order reduction methods are widely developed in 
computational electromagnetics because it can 
effectively reduce computational time while keeping 
accurate results on field distribution. Recently, the Cauer 
Ladder Network (CLN) method has been proposed by 
Kameari et al. [1] to reduce numerical model in 
magnetoquasistatics. This method enables to construct 
an equivalent electrical circuit as well as reduced bases 
where the reduced solution is sought. The construction of 
the reduced bases is based on an iterative process 
consisting in solving alternatively magnetostatic and 
current flow problems. In [2], it has been shown that CLN 
is equivalent to Padé approximation via the Lanczos 
process (PVL) for self-adjoint operators in linear space. 
In parallel, it has been shown that the Lanczos process 
leads to a loss orthogonality because of round off error in 
the finite precision arithmetic [3]. 

In this communication, we show that the original CLN 
method can lead to a loss of orthogonality of the vectors 
of the reduced bases. We propose an approach to keep 
the orthogonality by considering a modified Gram-
Schmidt process and thus the convergence of CLN could 
be reinforced. The proposed method is evaluated on a 
3D magnetoquasistatic example.  

2 Cauer ladder Network  

The Maxwell equations for a magnetoquasistatic problem 
in the frequency domain are: 

𝑐𝑢𝑟𝑙 𝑯 = 𝜎𝑬
𝑐𝑢𝑟𝑙 𝑬 = −𝑗𝜔𝜇𝑯

                  (1) 

Where 𝑯, 𝑬, 𝜇 and 𝜎 are the magnetic field, the electric 
field, the magnetic permeability and the electric 
conductivity respectively. We assume in the following 
that we have only one conductor Ωc in a domain Ω 
supplied by a current i. 

The CLN method aims at constructing two reduced 
orthogonal bases (𝑬2𝑛)𝑛∈ℕ and (𝑯2𝑛+1)𝑛∈ℕ satisfying: 

⟨𝑬2𝑛 , 𝜎𝑬2𝑚⟩Ω𝑐
= (1/𝑅2𝑛)𝛿𝑛𝑚        (2) 

⟨𝑯2𝑛+1, 𝜇𝑯2𝑚+1⟩Ω = 𝐿2𝑛+1𝛿𝑛𝑚       (3) 

Where 𝛿𝑛𝑚 represents the Kronecker operator, 𝑅2𝑛 and 

𝐿2𝑛+1  are the resistances and inductances of an 
equivalent electrical circuit presented in Fig 1.  

 

Fig 1. Cauer ladder circuit 

The electric and magnetic fields are then approximated 
from the voltages 𝑣2𝑛(𝜔)  and the currents 𝑖2𝑛+1(𝜔) 
defined in Fig 1. Such that: 

𝑬 = ∑  ∞
𝑛=0 𝑣2𝑛(𝜔)𝑬2𝑛                     (4) 

𝑯 = ∑  ∞
𝑛=0 𝑖2𝑛+1(𝜔)𝑯2𝑛+1             (5) 

The vectors 𝑬2𝑛  and 𝑯2𝑛+1 are calculated iteratively by 
solving alternatively magnetostatic and current flow 
problems [1]. The two static problems can be solved 
using a vector potential formulation (A or T) to keep the 
problem compatibility by imposing a divergence free 
source [4].  

3 Application of the CLN method 

We consider a conductor supply by a current i and 
surrounded by air presented in Fig 2. The permeability 
and conductivity of conductor are fixed to 4𝜋 × 10−4H/m 

and 5 × 107 S/m . The mesh is made with 336 082 
elements. The solutions of the equation systems derived 
from Finite Element (FE) A or T vector formulation, are 
the vectors of the reduced bases (𝑬2𝑛)𝑛∈ℕ  and 
(𝑯2𝑛+1)𝑛∈ℕ. To solve these equation systems, we have 
used either the direct solver MUMPS (MUltifrontal 
Massively Parallel sparse direct Solver) or an iterative 
solver Conjugate Gradient (CG). To quantify the 
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orthogonality of the reduced basis (𝑬2𝑛), we calculate the 

angle 𝜑𝐸,𝑚𝑛 given by: 

𝜑𝐸,𝑚𝑛 =
⟨𝑬2𝑛,𝜎𝑬2𝑚⟩Ω𝑐  

√⟨𝑬2𝑛,𝜎𝑬2𝑛⟩Ω𝑐∗⟨𝑬2𝑚,𝜎𝑬2𝑚⟩Ω𝑐

 =
⟨𝑬2𝑛,𝜎𝑬2𝑚⟩Ω𝑐  

√𝑅2𝑛𝑅2𝑚
     (6) 

We consider now a matrix G with its entries such that 
gmn= 0 if 𝜑𝐸,𝑚𝑛  <1% and gmn=1 else. Theoretically, the 

matrix G should be diagonal since the reduced basis 
(𝑬2𝑛)𝑛∈ℕ is orthogonal (see (2)). In Fig 3, we can see that 
the reduced basis is not orthogonal and depends on the 
choice of the solver. As it was shown in [2], the CLN 
method is in fact equivalent to a Lanczos process which 
often leads to a loss of orthogonality [3]. In Fig 4, we 
present the evolution of the resistance and the 
inductance of the inductor obtained by the full FE model 
and the CLN method when using the MUMPS and GC 
solvers. It appears that the MUMPS solver enables to 
obtained good results unless the loss of orthogonality. 
However, we can see that the GC solver leads to 
incorrect results at high frequency and leads also to 
convergence issue. 

 

Fig 2. geometry of coil 

 

Fig 3. sparsity of G solved by MUMPS (left) and by GC 
(right) 

3 CLN with modified Gram-Schmidt process 

For the standard Lanczos process, one can use modified 
Gram-Schmidt process to force the vector 𝑬2𝑛  to be 

orthogonal to all previous vectors 𝑬2𝑖  with 0≤i≤n-1. 
Hence, we propose to use the modified Gram-Schmidt 
process. From the solution 𝑬′2𝑛  of the vector potential 
formulation T, the new vector 𝑬2𝑛 of the reduced basis is 
obtained by: 

𝑬2𝑛 = 𝑬′2𝑛 − ∑
𝑬2𝑖

⟨𝑬2𝑖,𝜎𝑬2𝑖⟩Ω𝑐

𝑛−1
𝑖=0 ⟨𝑬2𝑖 , 𝜎𝑬2𝑛⟩Ω𝑐

          (8) 

A similar approach is applied to the construction of the 
magnetic reduced basis (𝑯2𝑛+1)𝑛∈ℕ . The CLN method 

converges even when using the GC solver, which gives 
now good results (see Fig.4).  

 

Fig 4. Evolution of the resistance R and the inductance 
L in function of the frequency given by the full FE model 

(MQS), the original CLN method with MUMPS (CLN 
MUMPS) and GC (CLN GC) solvers and modified CLN 
method (CLN with re-orthogonalization RO), both CLN 

composed of 120 stages. 

5 Conclusion 

The loss of orthogonality for the reduced basis built by 
the CLN method has been shown on a 3D magneto-
harmonic example. It appears that it can be critical when 
using iterative solvers leading to the non-convergence of 
the CLN method. A modified Gram-Schmidt process has 
been proposed in order to circumvent this issue which 
has been successfully tested on a 3D example. 
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